动态360 {\ Deg}沉浸视频中的突出人体检测(SHD)对于增强现实中的各种应用,各种应用是非常重要的。然而,由于缺乏具有大规模全向视频和丰富的注释,计算机视觉社区中,360 {\ DEG}视频SHD很少讨论。为此,我们提出了SHD360,这是第一个360 {\ DEG}视频SHD数据集,其中包含各种现实生活日常场景。由于到目前为止,没有提出360 {\ DEG}图像/视频SHD的方法,我们系统地基准于我们的SHD360上的11个代表性的最先进的突出物体检测(SOD)方法,并探索了从广泛的实验导出的关键问题结果。我们希望我们拟议的数据集和基准作为推进对360 {\ DEG}全景数据的以人为本的研究提供良好的起点。
translated by 谷歌翻译
在过去的几年中,已经提出了许多深度学习方法来解决从RGB图像分段突出对象的任务。然而,这些方法取决于单个模态,无法实现最先进的性能,以广泛使用的光场突出物体检测(SOD)数据集收集大规模的自然图像并提供多视图等多种模态,微镜头图像和深度图。最近提出的光场SOD方法已经获得了改善的检测精度,但仍然预测粗糙物体的结构并执行慢速推理速度。为此,我们提出了CMA-Net,其中包括两种小型级联的互感模块,旨在融合来自全体焦点和深度的方式的高级功能。我们提出的CMA-Net优于两个SOD方法,在两个广泛应用的光场基准数据集上。此外,所提出的CMA-Net能够以53 FPS的速度推断。广泛的定量和定性实验说明了我们CMA-Net的有效性和效率。
translated by 谷歌翻译
深度学习(DL)在许多与人类相关的任务中表现出巨大的成功,这导致其在许多计算机视觉的基础应用中采用,例如安全监控系统,自治车辆和医疗保健。一旦他们拥有能力克服安全关键挑战,这种安全关键型应用程序必须绘制他们的成功部署之路。在这些挑战中,防止或/和检测对抗性实例(AES)。对手可以仔细制作小型,通常是难以察觉的,称为扰动的噪声被添加到清洁图像中以产生AE。 AE的目的是愚弄DL模型,使其成为DL应用的潜在风险。在文献中提出了许多测试时间逃避攻击和对策,即防御或检测方法。此外,还发布了很少的评论和调查,理论上展示了威胁的分类和对策方法,几乎​​没有焦点检测方法。在本文中,我们专注于图像分类任务,并试图为神经网络分类器进行测试时间逃避攻击检测方法的调查。对此类方法的详细讨论提供了在四个数据集的不同场景下的八个最先进的探测器的实验结果。我们还为这一研究方向提供了潜在的挑战和未来的观点。
translated by 谷歌翻译
This report summarizes the work carried out by the authors during the Twelfth Montreal Industrial Problem Solving Workshop, held at Universit\'e de Montr\'eal in August 2022. The team tackled a problem submitted by CBC/Radio-Canada on the theme of Automatic Text Simplification (ATS).
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Scene understanding is a major challenge of today's computer vision. Center to this task is image segmentation, since scenes are often provided as a set of pictures. Nowadays, many such datasets also provide 3D geometry information given as a 3D point cloud acquired by a laser scanner or a depth camera. To exploit this geometric information, many current approaches rely on both a 2D loss and 3D loss, requiring not only 2D per pixel labels but also 3D per point labels. However obtaining a 3D groundtruth is challenging, time-consuming and error-prone. In this paper, we show that image segmentation can benefit from 3D geometric information without requiring any 3D groundtruth, by training the geometric feature extraction with a 2D segmentation loss in an end-to-end fashion. Our method starts by extracting a map of 3D features directly from the point cloud by using a lightweight and simple 3D encoder neural network. The 3D feature map is then used as an additional input to a classical image segmentation network. During training, the 3D features extraction is optimized for the segmentation task by back-propagation through the entire pipeline. Our method exhibits state-of-the-art performance with much lighter input dataset requirements, since no 3D groundtruth is required.
translated by 谷歌翻译
An eco-system of agents each having their own policy with some, but limited, generalizability has proven to be a reliable approach to increase generalization across procedurally generated environments. In such an approach, new agents are regularly added to the eco-system when encountering a new environment that is outside of the scope of the eco-system. The speed of adaptation and general effectiveness of the eco-system approach highly depends on the initialization of new agents. In this paper we propose different techniques for such initialization and study their impact. We then rework the ecosystem setup to use forked agents which brings better results than the initial eco-system approach with a drastically reduced number of training cycles.
translated by 谷歌翻译
We construct a universally Bayes consistent learning rule that satisfies differential privacy (DP). We first handle the setting of binary classification and then extend our rule to the more general setting of density estimation (with respect to the total variation metric). The existence of a universally consistent DP learner reveals a stark difference with the distribution-free PAC model. Indeed, in the latter DP learning is extremely limited: even one-dimensional linear classifiers are not privately learnable in this stringent model. Our result thus demonstrates that by allowing the learning rate to depend on the target distribution, one can circumvent the above-mentioned impossibility result and in fact, learn \emph{arbitrary} distributions by a single DP algorithm. As an application, we prove that any VC class can be privately learned in a semi-supervised setting with a near-optimal \emph{labeled} sample complexity of $\tilde{O}(d/\varepsilon)$ labeled examples (and with an unlabeled sample complexity that can depend on the target distribution).
translated by 谷歌翻译
There is a growing interest in the use of reduced-precision arithmetic, exacerbated by the recent interest in artificial intelligence, especially with deep learning. Most architectures already provide reduced-precision capabilities (e.g., 8-bit integer, 16-bit floating point). In the context of FPGAs, any number format and bit-width can even be considered.In computer arithmetic, the representation of real numbers is a major issue. Fixed-point (FxP) and floating-point (FlP) are the main options to represent reals, both with their advantages and drawbacks. This chapter presents both FxP and FlP number representations, and draws a fair a comparison between their cost, performance and energy, as well as their impact on accuracy during computations.It is shown that the choice between FxP and FlP is not obvious and strongly depends on the application considered. In some cases, low-precision floating-point arithmetic can be the most effective and provides some benefits over the classical fixed-point choice for energy-constrained applications.
translated by 谷歌翻译